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ABSTRACT 

We have created a python based framework for searching 

Twitter using a keyword query which can be either a Hashtag or a 

URL. The program returns all tweets containing that query along 

with a lot of meta data. Our algorithm then creates a network of all 

the users involved in sending that tweet and creates a directed graph 

with users who tweeted that query as nodes and edge direction 

showing a “followed by” relationship (i.e. the direction in which 

information flows on Twitter).  

Once we construct the graph, we run various network analysis 

algorithms on it such as degree distribution, betweenness and 

closeness centrality, community detection and average clustering 

among others. We also collect available location data and time 

stamps to provide a complete picture of the spread of that query or 

‘meme’ over time. 

CCS CONCEPTS 

• Networks~Social media networks   • Networks~Online social 

• Information systems~Wrappers (data mining) • Information 

systems~Data mining 

KEYWORDS 

Twitter, online social networks, information propagation, data 

mining, reciprocity, retweet, information diffusion, network 

analysis. 

1. INTRODUCTION 

Twitter is a very popular social media platform. It is unique in 

its micro-blogging style service which makes it a platform for 

people to share important pieces of information with a larger 

community of followers. Over the past few years it has gain a lot 

of media attention as most celebrities and politicians as well release 

statements on the platform making it the center of different news 

media stories. Twitter users send and receive messages known as 

“tweets”. These tweets as shown in figure 1, are generally text 

based post of up to 280 characters in length. They may also contain 

multimedia content such as images, GIFs, videos and audios as well 

as URLs. Tweets are delivered to users on a subscription based 

process whereby if user A is following user B then user A will 

receive tweets from user B. We represent this as an edge in our 

system as E (B -> A). This is because the information is flowing 

from B to A or in other words B is followed by A. If B is not 

following A, then B will not receive A’s tweets. Because of this 

subscription based model, our graph then becomes a directed graph 

with nodes representing users and edges representing this 

“followed by” relationship of information flow. This relationship is 

different from other social media platforms such as Facebook, 

MySpace or Snapchat in that following someone doesn’t require 

reciprocity. User A can follow user B, but user B doesn’t have to 

follow user A back. 

 

 

Figure 1. Example of a tweet with user mentions, a hashtag, a 

URL and a multimedia image 

Tweets as shown in Figure 1, often contain Hashtags and URLs 

which are reused and retweeted by other users. These Hashtags are 

very critical for analyzing the flow of a particular piece of 

information over the social media. They spread in a similar fashion 
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as ‘memes’ as mentioned by Leskovec et al [1]. Our application 

framework is designed in particular to search such Hashtags and 

similarly named entities over a period of time collecting key 

metadata and user network information to allow for detailed 

quantitative study of how particular memes spread over the social 

media platform. 

The reason why Twitter is an idea social media platform for 

doing such network analysis study is because of a number of factors. 

Firstly, it has an explicitly defined social media structure (the 

follower-following subscription model). Secondly, information on 

Twitter naturally spreads with hashtag associations to certain pieces 

of stories. Which makes tracking the flow of that particular 

information in the social network easy. We don’t need to spend 

time applying complex topic modelling algorithms or searching for 

named entities or looking for similar phrase clusters to categorize 

tweets taking about similar topics. 

These hashtags also then become very integral for people to 

find out more news and information related to particular stories, 

event or news. Certain hashtags if tweeted enough times in a short 

span of time start to ‘trend’. These top trends are shown on a users’ 

home screen. This feature actually makes the top trending tweets 

even more ‘sticky’ as more and more people start talking about it. 

Our framework will allow for users to collect the required data 

to perform detailed analysis on large sets of data and discover 

interesting behaviors. The system also performs key network 

analysis algorithms to gain better insights into the underlying 

network of users. 

 

2. RELATED WORK 

There have been many studies done in the past on Twitter. It 

has gained popularity in the past decade for its role in the spread of 

information over social networks. There are many research papers 

focusing on different aspects of the social network. One can also 

find paid software frameworks for conducting analysis on Twitter 

for commercial purposes. There are also a number of open source 

implementations available on github to start using the Twitter API 

for accessing tweets. We will discuss both research and 

developmental work done in this area. 

2.1. RESEARCH WORK 

Due to the social network structure and public nature of Twitter, 

it has gained a lot of attention in the past from various researchers 

in the social network domain. 

Some have studied the topology of the follower-following 

subscription model [2], [3]. Some have also conducted sentiment 

analysis on tweets based on query terms [4]. Meeyoung et al [5] 

have also studied how influence works on Twitter using parameters 

such as in-degree, retweets and mentions. Some have also studied 

accessing the credibility of tweets by learning features and 

propagation patterns of real and fake tweets [6].  

Haewoon et al [2] have done exhaustive data mining on twitter 

collecting all user data and tweets to analyze the structure and 

dynamics of the social networking platform. Their results show that 

for a large majority of people, the network shows power law 

distribution on the number of followers/following apart from the 

most popular users which have a skewed number of followers and 

following dynamic. They follow orders of magnitude less than the 

number of users following them. Their research also shows Twitter 

follows the ‘small world’ paradigm. Where most users are 

separated by 4 degrees on the platform. 

Takeshi et al did work on the real-time aspect of twitter [7], 

using the platform to detect earthquakes and pin point its location. 

They investigate the real-time interaction of events such as 

earthquakes in Twitter and propose an algorithm to monitor tweets 

and to detect a target event. To detect a target event, they devise a 

classifier of tweets based on features such as the keywords in a 

tweet, the number of words, and their context. Subsequently, they 

produce a probabilistic spatiotemporal model for the target event 

that can find the center and the trajectory of the event location. They 

consider each Twitter user as a sensor, and set a problem to detect 

an event based on sensory observations. Location estimation 

methods such as Kalman filtering and particle filtering are used to 

estimate the locations of events. 

 

2.2. IMPLEMENTATION WORK 

Twitter has developed and published their own API framework 

which can be used to get all manner of public data form twitter [8]. 

Many various wrappers have been created for this API in languages 

such as Python, PHP, Java, JavaScript, etc. which allows 

developers to write their own code based on what type of data they 

want and in what format [9]. However, there is no free open source 

analysis tool available to easily fetch data from twitter, organize 

and clean it, perform network and graphic algorithms on it and 

finally to visualize these results in a meaningful way. There are 

various small snippet codes available on GitHub to connect to the 

Twitter API to get tweets but nothing in terms of developing an 

actual network analysis toolbox.  

This is where our work comes in. We are creating an open 

source Python framework to scrape data from Twitter. The code 

will be available on Github [10] for users to download and start 

collecting data from Twitter. Our framework not only collects the 

data, it also cleans it, organizes it and also performs some 

visualization work in the form of network graphs, scatter plots over 

time and location maps, etc.  

Another key aspect about our work is that users can perform 

analysis at a granular level. Most research work done focuses on 

the larger network and global trends. Our framework will allow 

users to perform localized analysis on a per tweet/Hashtag level.  

3. DATA GATHERING 

There are varies data mining and cleaning processes involved 

in making the data ready for detailed analysis work. Below we 

mention the APIs, Libraries and the programing environment used 

to gather all the required data for the framework. 
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3.1. Twitter API 

Twitter offers a comprehensive Application programming 

Interface (API) that is easy to crawl and collect data from [8]. The 

challenge is when we gather data from the free version [11] of the 

API which imposes strict usage and rate limitations. One key 

limitation is being restricted to having access to only the past 7 days 

of Twitter data. Which essentially makes it really hard to crawl a 

hashtag from its point of origin if it was first started earlier than 7 

days. This can be overcome if we keep on collecting the data every 

day, giving us larger datasets to work with. Another big restriction 

is on the amount of requests we can make over time. Twitter 

imposes a wait time of 15 minutes after a certain number of requests 

made by the API, which again makes it very difficult to collect large 

amounts of data as collecting it all will take a lot of time. We have 

to make several API calls in order to collect all the relevant tweets 

data. First, we need to run a query for a specific term such as a 

hashtag. We get the complete tweets data in a stream from that 

query which we clean up and fetch only the key important data from 

it such as the Users name tweeting, the tweet content, location of 

the user, followers and following numbers, all the hashtags and 

URLs mentioned in the tweet, etc. This requires making N API 

calls where N = total number of tweets fetched. Figure 2 shows a 

snapshot of the data fetched for “#OntarioTech”, showing all the 

key data points gathers for the gathered tweets. 

 

 

Figure 2. Snapshot of the data gathered for “#OntarioTech”, 

showing all the key data points our framework is collecting. 

 

For all these tweets we find M number of unique users (there 

are times when users have made multiple tweets on a hashtag). For 

all these M users we make MC2 API calls. For each pair of users, we 

find if they have a follower, following relationship. This query 

helps us in forming a directed edge graph network.  

3.2. Geolocation 

Another key piece of data we are gathering is location data of 

users. For this we are using a Python library called Geopy [12]. 

This library has a free service available called Nominatim [13], 

which is an open street map API, used to convert a given text of 

location address into actual geographical coordinates. This library 

is free but applies a 1 request per second per user limitation. Which 

again requires a lot of time for large number of user locations. We 

store the latitude and longitude data of each user in our database. 

The reason we have to perform a separate location API call is 

because Twitter allows users to put in location information as a 

string, without limiting them to actual location data. This in turn 

creates a problem for data analysis as users occasionally put in fake 

or made up locations. Our geolocation code takes in all the users’ 

location information and tries to convert them into longitude and 

latitude data when possible. We use these coordinates to map out 

the users on a world map, showing where the users are tweeting 

that specific hashtag from. 

4. IMPLEMENTATION 

The entire code has been written in a Python 3.7 [14] 

development environment using Anaconda package manager [15]. 

The code has been pushed to Github [16], where anyone can 

download the code and start gathering their own data and start 

performing analysis on Twitter. 

We used Tweepy [17], a Python wrapper for the Twitter API to 

gather the initial tweets data. Our code searches for a query term on 

the Twitter network, which returns a list of JSON objects of 

matching tweets with that query term. For network analysis 

purposes we recommend searching for Hashtags, although the code 

can be used to search for URLs, Names, Places, phrases and other 

random terms as well. The JSON object contains a lot of 

information regarding the tweet and the user. We collect the text of 

the tweet, all the hashtags and URLs mentioned in it. The user’s ID 

and followers count and location data. In addition to the tweets data, 

we then perform another API request on all the user IDs collected 

to find follower relationships between the users tweeting query 

term. This gives us a directed graph with users tweeting about a 

particular term as nodes and the directed edges between them 

representing the direction of the flow of information. 

After gathering all the data using Tweepy, we store it in CSV 

files for easy access and storage. The CSV files are then loaded into 

the Data Analysis script which cleans the data, performs location 

update using Geopy and sets up the graphs for users using 

NetworkX [18]. We create a directed graph based on the “followed 

by” relationship. The arrow indicates the flow of information. We 

also use Plotly [19] to plot various graphs, line and scatter plots for 

our results. Figure 3 shows a graph of user connections for the 

hashtag query #OntarioTech.  
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Figure 3. Graph for the users who tweeted using the hashtag 

#OntarioTech during a 7-day period. For this graph the 

Average Clustering = 0.5928  

5. ANALYSIS 

Once we have all our data gathered and have constructed the 

network graph G, we have access to a host of tools to perform 

analysis on the data. 

5.1. Linear Degree Distribution 

For the given network of users, we plot their total degree, in 

degree (following) and out degree (followed by). Figure 4 shows 

the plot of the graph G obtained of users who used the hashtag 

#OntarioTech. 

 

 

Figure 4. Linear Degree distribution of nodes in G, showing 

total degree, in degree and out degree. The plot shows 

OntarioTech_U as the node with the highest total degree and 

highest in degree 

 

 

5.2. Average Clustering 

Compute the average clustering coefficient for the graph G. The 

clustering coefficient for the graph is the average, 

 

C =
1

𝑛
∑ 𝑐𝑢

𝑢 ∈𝐺

 

 

where cu is the clustering,  

𝑐𝑢 =
1

𝑑𝑒𝑔𝑡𝑜𝑡(𝑢)(𝑑𝑒𝑔𝑡𝑜𝑡(𝑢) − 1) − 2𝑑𝑒𝑔↔(𝑢)
𝑇(𝑢) 

 

where T(u) is the number of directed triangles through node u, 

degtot(u) is the sum of in degree and out degree of u and deg↔(u) 

is the reciprocal degree of u. 

5.3. Average Degree Connectivity 

The average degree connectivity is the average nearest neighbor 

degree of nodes with degree k. For a given node i, 

 

𝑘𝑛𝑛,𝑖
𝑤 =

1

𝑠𝑖
∑ 𝑤𝑖𝑗𝑘𝑗

𝑗∈𝑁(𝑖)

 

 

where si is the weighted degree of node i, wij is the weight of 

the edge that links i and j, and N(i) are the neighbors of node i. 

Figure 4 shows the plot of the average degree connectivity against 

degree k. This algorithm is also called the “K nearest neighbors”. 

 

 

Figure 5. Plot of the “K Nearest Neighbors” against k number 

of degree for users who tweeted with the hashtag 

#OntarioTech 
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5.4. Betweenness Centrality 

Betweenness centrality of a node v is the sum of the fraction of 

all-pairs shortest paths that pass through v 

 

𝑐𝐵(𝑣) = ∑
𝜎(𝑠, 𝑡|𝑣)

𝜎(𝑠, 𝑡)
𝑠,𝑡∈𝑉

 

 

where V is the set of nodes, σ(s,t) is the number of shortest (s,t)-

paths, and σ(s,t|v) is the number of those paths passing through 

some node v other than s,t. If s=t, σ(s,t)=1, and if v∈s,t, σ(s,t|v)=0. 

Figure 5 shows the Betweenness Centrality of the users who 

tweeted with the hashtag #OntarioTech. 

 

Figure 6. Betweenness Centrality calculation for the users who 

tweeted with the hashtag #OntarioTech. This shows 

@OntarioTech_U as the most in between user. 

 

5.5. Closeness Centrality 

Closeness centrality of a node u is the reciprocal of the average 

shortest path distance to u over all n-1 reachable nodes. 

 

𝐶(𝑢) =
𝑛 − 1

∑ 𝑑(𝑣, 𝑢)𝑛−1
𝑣=1

 

 

where d(v, u) is the shortest-path distance between v and u, and 

n is the number of nodes that can reach u. Notice that the closeness 

distance function computes the incoming distance to u for directed 

graphs. Figure 7 shows the closeness centrality for the in degree of 

the graph of users who tweeted with the hashtag #OntarioTech 

 

 

Figure 7. Closeness Centrality for the in degree of the graph of 

users who tweeted with the hashtag #OntarioTech 

5.5.2 Closeness Centrality (Wasserman and Faust) 

Wasserman and Faust [21] propose an improved formula for 

graphs with more than one connected component. The result is “a 

ratio of the fraction of actors in the group who are reachable, to the 

average distance” from the reachable actors. Nodes from small 

components receive a smaller closeness value. Letting N denote the 

number of nodes in the graph, 

 

𝐶𝑊𝐹(𝑢) =
𝑛 − 1

𝑁 − 1

𝑛 − 1

∑ 𝑑(𝑣, 𝑢)𝑛−1
𝑣=1

 

 

Figure 8 shows the results of this Wasserman-Faust closeness 

centrality measure. 

 

 

Figure 8. Closeness Centrality based on the Wasserman-Faust 

algorithm for the in degree of the graph of users who tweeted 

with the hashtag #OntarioTech 
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5.6. Community Detection 

For community detection we use the Louvain Heuristic [20]. 

The method is a greedy optimization method that attempts to 

optimize the "modularity" of a partition of the network. Modularity 

is defined as: 

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 − 

𝑘𝑖𝑘𝑗

2𝑚
]

𝑖𝑗

𝜕(𝑐𝑖 , 𝑐𝑗) 

Where Aij represents the edge weight between nodes i and j; ki 

and kj are the sum of the weights of the edges attached to nodes i 

and j, respectively; 2m is the sum of all of the edge weights in the 

graph; ci and cj are the communities of the nodes; and 𝜕 is a simple 

kroneker delta function. Figure 9 shows the result of applying this 

community detection algorithm on the undirected graph of the users 

who tweeted the hashtag #OntarioTech. 

 

 

Figure 9. Community Detection algorithm, based on 

modularity optimization on the users who tweeted the hashtag 

#OntarioTech 

 

5.7. Location Data 

For all the users we ran a check on their geographical 

coordinates. Twitter allows users to enter an address text string for 

location. This requires an additional cleaning step to get 

geographical coordinates from the address text. We are using the 

open source Nominatim framework to convert readable address text 

to location coordinates. Figure 10 shows the location data which 

was fetched for the users who tweeted with the hashtag 

#OntarioTech. 

 

 

 

Figure 10. Location map for the users who tweeted with the 

hashtag #OntarioTech 

 

5.8. Degree Distribution Plots 

For each hashtag analysis we also plot degree distribution plots 

for the users’ network behind it. We plot the frequency of degree, 

cumulative frequency and complementary cumulative frequency 

distribution for both in-degrees and out-degrees of the graph. 

Figure 11 shows the plots for the users’ network of people who 

tweeted with the hashtag #OntarioTech. 

 

 

Figure 11. Plots of Frequency, CFD and CCDF against 

degrees for in-degrees and out-degrees of the network of users 

who tweeted with hashtag #OntarioTech 

For the case of #OntarioTech, our degree distribution doesn’t 

follow the power law distribution. This is probably because this is 

the new name of the University and is primarily being promoted by 

a small connected group of people, which deviates from a real 

world model.  
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6. FUTURE WORK 

There are many directions which we can take to extend this 

work. The framework can be made into a proper Python library, 

making it even more accessible and usable for network analysis 

work. More features can be added such as showing simulations of 

the flow of information or hashtags over a network overtime like 

an infection network. This can be achieved using all the existing 

data collected using the code base and plugging that data in a 

JavaScript library for graphs and simulations.  

We can also try answering questions such as: How are people 

connected on Twitter? Do people with more followers influence 

more people? How does information flow through retweets? What 

is a typical topology of a network on Twitter? How different 

hashtags correlated with one another? And so on. We can answer 

many such questions once we have access to sufficient data and 

have constructed the underlying network of users. 

We can also conduct a detailed study of external influence on 

various hashtags that trend over the network. In particular, how 

different “News Cycle” stories evolve overtime on the social media 

platform. Similar to the work on meme tracking done by Leskovec 

et al [1]. 

7. CONCLUSION 

In this project we have created a Python framework for 

collecting key network data from Twitter and run network analysis 

algorithms. The code can query any term, returning all matched 

tweets. We collect key data points from the tweets text and meta 

data, which we use to construct users network data. With the 

network graph we implement various network analysis algorithms 

such as degree distribution, closeness and betweenness centrality, 

clustering and community detection. 

Using this repository of code, users can start performing 

detailed analysis on Twitter at a very granular level, analyzing 

individual Hashtag propagation on an daily scale, perform network 

analysis on the users tweeting those hashtags and map out location 

data of the users. 
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