
Application Framework for Network Data Analysis on Twitter

Muhammad Salik Nadeem
 Faculty of Science

 Ontario Tech University (UOIT)

 Oshawa, Ontario, Canada

 muhammadsalik.nadeem@uoit.ca

ABSTRACT

We have created a python based framework for searching

Twitter using a keyword query which can be either a Hashtag or a

URL. The program returns all tweets containing that query along

with a lot of meta data. Our algorithm then creates a network of all

the users involved in sending that tweet and creates a directed graph

with users who tweeted that query as nodes and edge direction

showing a “followed by” relationship (i.e. the direction in which

information flows on Twitter).

Once we construct the graph, we run various network analysis

algorithms on it such as degree distribution, betweenness and

closeness centrality, community detection and average clustering

among others. We also collect available location data and time

stamps to provide a complete picture of the spread of that query or

‘meme’ over time.

CCS CONCEPTS

• Networks~Social media networks • Networks~Online social

• Information systems~Wrappers (data mining) • Information

systems~Data mining

KEYWORDS

Twitter, online social networks, information propagation, data

mining, reciprocity, retweet, information diffusion, network

analysis.

1. INTRODUCTION

Twitter is a very popular social media platform. It is unique in

its micro-blogging style service which makes it a platform for

people to share important pieces of information with a larger

community of followers. Over the past few years it has gain a lot

of media attention as most celebrities and politicians as well release

statements on the platform making it the center of different news

media stories. Twitter users send and receive messages known as

“tweets”. These tweets as shown in figure 1, are generally text

based post of up to 280 characters in length. They may also contain

multimedia content such as images, GIFs, videos and audios as well

as URLs. Tweets are delivered to users on a subscription based

process whereby if user A is following user B then user A will

receive tweets from user B. We represent this as an edge in our

system as E (B -> A). This is because the information is flowing

from B to A or in other words B is followed by A. If B is not

following A, then B will not receive A’s tweets. Because of this

subscription based model, our graph then becomes a directed graph

with nodes representing users and edges representing this

“followed by” relationship of information flow. This relationship is

different from other social media platforms such as Facebook,

MySpace or Snapchat in that following someone doesn’t require

reciprocity. User A can follow user B, but user B doesn’t have to

follow user A back.

Figure 1. Example of a tweet with user mentions, a hashtag, a

URL and a multimedia image

Tweets as shown in Figure 1, often contain Hashtags and URLs

which are reused and retweeted by other users. These Hashtags are

very critical for analyzing the flow of a particular piece of

information over the social media. They spread in a similar fashion

mailto:muhammadsalik.nadeem@uoit.ca

Network Analysis, April, 2019, Oshawa, Ontario, Canada S. Nadeem

as ‘memes’ as mentioned by Leskovec et al [1]. Our application

framework is designed in particular to search such Hashtags and

similarly named entities over a period of time collecting key

metadata and user network information to allow for detailed

quantitative study of how particular memes spread over the social

media platform.

The reason why Twitter is an idea social media platform for

doing such network analysis study is because of a number of factors.

Firstly, it has an explicitly defined social media structure (the

follower-following subscription model). Secondly, information on

Twitter naturally spreads with hashtag associations to certain pieces

of stories. Which makes tracking the flow of that particular

information in the social network easy. We don’t need to spend

time applying complex topic modelling algorithms or searching for

named entities or looking for similar phrase clusters to categorize

tweets taking about similar topics.

These hashtags also then become very integral for people to

find out more news and information related to particular stories,

event or news. Certain hashtags if tweeted enough times in a short

span of time start to ‘trend’. These top trends are shown on a users’

home screen. This feature actually makes the top trending tweets

even more ‘sticky’ as more and more people start talking about it.

Our framework will allow for users to collect the required data

to perform detailed analysis on large sets of data and discover

interesting behaviors. The system also performs key network

analysis algorithms to gain better insights into the underlying

network of users.

2. RELATED WORK

There have been many studies done in the past on Twitter. It

has gained popularity in the past decade for its role in the spread of

information over social networks. There are many research papers

focusing on different aspects of the social network. One can also

find paid software frameworks for conducting analysis on Twitter

for commercial purposes. There are also a number of open source

implementations available on github to start using the Twitter API

for accessing tweets. We will discuss both research and

developmental work done in this area.

2.1. RESEARCH WORK

Due to the social network structure and public nature of Twitter,

it has gained a lot of attention in the past from various researchers

in the social network domain.

Some have studied the topology of the follower-following

subscription model [2], [3]. Some have also conducted sentiment

analysis on tweets based on query terms [4]. Meeyoung et al [5]

have also studied how influence works on Twitter using parameters

such as in-degree, retweets and mentions. Some have also studied

accessing the credibility of tweets by learning features and

propagation patterns of real and fake tweets [6].

Haewoon et al [2] have done exhaustive data mining on twitter

collecting all user data and tweets to analyze the structure and

dynamics of the social networking platform. Their results show that

for a large majority of people, the network shows power law

distribution on the number of followers/following apart from the

most popular users which have a skewed number of followers and

following dynamic. They follow orders of magnitude less than the

number of users following them. Their research also shows Twitter

follows the ‘small world’ paradigm. Where most users are

separated by 4 degrees on the platform.

Takeshi et al did work on the real-time aspect of twitter [7],

using the platform to detect earthquakes and pin point its location.

They investigate the real-time interaction of events such as

earthquakes in Twitter and propose an algorithm to monitor tweets

and to detect a target event. To detect a target event, they devise a

classifier of tweets based on features such as the keywords in a

tweet, the number of words, and their context. Subsequently, they

produce a probabilistic spatiotemporal model for the target event

that can find the center and the trajectory of the event location. They

consider each Twitter user as a sensor, and set a problem to detect

an event based on sensory observations. Location estimation

methods such as Kalman filtering and particle filtering are used to

estimate the locations of events.

2.2. IMPLEMENTATION WORK

Twitter has developed and published their own API framework

which can be used to get all manner of public data form twitter [8].

Many various wrappers have been created for this API in languages

such as Python, PHP, Java, JavaScript, etc. which allows

developers to write their own code based on what type of data they

want and in what format [9]. However, there is no free open source

analysis tool available to easily fetch data from twitter, organize

and clean it, perform network and graphic algorithms on it and

finally to visualize these results in a meaningful way. There are

various small snippet codes available on GitHub to connect to the

Twitter API to get tweets but nothing in terms of developing an

actual network analysis toolbox.

This is where our work comes in. We are creating an open

source Python framework to scrape data from Twitter. The code

will be available on Github [10] for users to download and start

collecting data from Twitter. Our framework not only collects the

data, it also cleans it, organizes it and also performs some

visualization work in the form of network graphs, scatter plots over

time and location maps, etc.

Another key aspect about our work is that users can perform

analysis at a granular level. Most research work done focuses on

the larger network and global trends. Our framework will allow

users to perform localized analysis on a per tweet/Hashtag level.

3. DATA GATHERING

There are varies data mining and cleaning processes involved

in making the data ready for detailed analysis work. Below we

mention the APIs, Libraries and the programing environment used

to gather all the required data for the framework.

Network Analysis, April, 2019, Oshawa, Ontario, Canada S. Nadeem

3.1. Twitter API

Twitter offers a comprehensive Application programming

Interface (API) that is easy to crawl and collect data from [8]. The

challenge is when we gather data from the free version [11] of the

API which imposes strict usage and rate limitations. One key

limitation is being restricted to having access to only the past 7 days

of Twitter data. Which essentially makes it really hard to crawl a

hashtag from its point of origin if it was first started earlier than 7

days. This can be overcome if we keep on collecting the data every

day, giving us larger datasets to work with. Another big restriction

is on the amount of requests we can make over time. Twitter

imposes a wait time of 15 minutes after a certain number of requests

made by the API, which again makes it very difficult to collect large

amounts of data as collecting it all will take a lot of time. We have

to make several API calls in order to collect all the relevant tweets

data. First, we need to run a query for a specific term such as a

hashtag. We get the complete tweets data in a stream from that

query which we clean up and fetch only the key important data from

it such as the Users name tweeting, the tweet content, location of

the user, followers and following numbers, all the hashtags and

URLs mentioned in the tweet, etc. This requires making N API

calls where N = total number of tweets fetched. Figure 2 shows a

snapshot of the data fetched for “#OntarioTech”, showing all the

key data points gathers for the gathered tweets.

Figure 2. Snapshot of the data gathered for “#OntarioTech”,

showing all the key data points our framework is collecting.

For all these tweets we find M number of unique users (there

are times when users have made multiple tweets on a hashtag). For

all these M users we make MC2 API calls. For each pair of users, we

find if they have a follower, following relationship. This query

helps us in forming a directed edge graph network.

3.2. Geolocation

Another key piece of data we are gathering is location data of

users. For this we are using a Python library called Geopy [12].

This library has a free service available called Nominatim [13],

which is an open street map API, used to convert a given text of

location address into actual geographical coordinates. This library

is free but applies a 1 request per second per user limitation. Which

again requires a lot of time for large number of user locations. We

store the latitude and longitude data of each user in our database.

The reason we have to perform a separate location API call is

because Twitter allows users to put in location information as a

string, without limiting them to actual location data. This in turn

creates a problem for data analysis as users occasionally put in fake

or made up locations. Our geolocation code takes in all the users’

location information and tries to convert them into longitude and

latitude data when possible. We use these coordinates to map out

the users on a world map, showing where the users are tweeting

that specific hashtag from.

4. IMPLEMENTATION

The entire code has been written in a Python 3.7 [14]

development environment using Anaconda package manager [15].

The code has been pushed to Github [16], where anyone can

download the code and start gathering their own data and start

performing analysis on Twitter.

We used Tweepy [17], a Python wrapper for the Twitter API to

gather the initial tweets data. Our code searches for a query term on

the Twitter network, which returns a list of JSON objects of

matching tweets with that query term. For network analysis

purposes we recommend searching for Hashtags, although the code

can be used to search for URLs, Names, Places, phrases and other

random terms as well. The JSON object contains a lot of

information regarding the tweet and the user. We collect the text of

the tweet, all the hashtags and URLs mentioned in it. The user’s ID

and followers count and location data. In addition to the tweets data,

we then perform another API request on all the user IDs collected

to find follower relationships between the users tweeting query

term. This gives us a directed graph with users tweeting about a

particular term as nodes and the directed edges between them

representing the direction of the flow of information.

After gathering all the data using Tweepy, we store it in CSV

files for easy access and storage. The CSV files are then loaded into

the Data Analysis script which cleans the data, performs location

update using Geopy and sets up the graphs for users using

NetworkX [18]. We create a directed graph based on the “followed

by” relationship. The arrow indicates the flow of information. We

also use Plotly [19] to plot various graphs, line and scatter plots for

our results. Figure 3 shows a graph of user connections for the

hashtag query #OntarioTech.

Network Analysis, April, 2019, Oshawa, Ontario, Canada S. Nadeem

Figure 3. Graph for the users who tweeted using the hashtag

#OntarioTech during a 7-day period. For this graph the

Average Clustering = 0.5928

5. ANALYSIS

Once we have all our data gathered and have constructed the

network graph G, we have access to a host of tools to perform

analysis on the data.

5.1. Linear Degree Distribution

For the given network of users, we plot their total degree, in

degree (following) and out degree (followed by). Figure 4 shows

the plot of the graph G obtained of users who used the hashtag

#OntarioTech.

Figure 4. Linear Degree distribution of nodes in G, showing

total degree, in degree and out degree. The plot shows

OntarioTech_U as the node with the highest total degree and

highest in degree

5.2. Average Clustering

Compute the average clustering coefficient for the graph G. The

clustering coefficient for the graph is the average,

C =
1

𝑛
∑ 𝑐𝑢

𝑢 ∈𝐺

where cu is the clustering,

𝑐𝑢 =
1

𝑑𝑒𝑔𝑡𝑜𝑡(𝑢)(𝑑𝑒𝑔𝑡𝑜𝑡(𝑢) − 1) − 2𝑑𝑒𝑔↔(𝑢)
𝑇(𝑢)

where T(u) is the number of directed triangles through node u,

degtot(u) is the sum of in degree and out degree of u and deg↔(u)

is the reciprocal degree of u.

5.3. Average Degree Connectivity

The average degree connectivity is the average nearest neighbor

degree of nodes with degree k. For a given node i,

𝑘𝑛𝑛,𝑖
𝑤 =

1

𝑠𝑖
∑ 𝑤𝑖𝑗𝑘𝑗

𝑗∈𝑁(𝑖)

where si is the weighted degree of node i, wij is the weight of

the edge that links i and j, and N(i) are the neighbors of node i.

Figure 4 shows the plot of the average degree connectivity against

degree k. This algorithm is also called the “K nearest neighbors”.

Figure 5. Plot of the “K Nearest Neighbors” against k number

of degree for users who tweeted with the hashtag

#OntarioTech

Network Analysis, April, 2019, Oshawa, Ontario, Canada S. Nadeem

5.4. Betweenness Centrality

Betweenness centrality of a node v is the sum of the fraction of

all-pairs shortest paths that pass through v

𝑐𝐵(𝑣) = ∑
𝜎(𝑠, 𝑡|𝑣)

𝜎(𝑠, 𝑡)
𝑠,𝑡∈𝑉

where V is the set of nodes, σ(s,t) is the number of shortest (s,t)-

paths, and σ(s,t|v) is the number of those paths passing through

some node v other than s,t. If s=t, σ(s,t)=1, and if v∈s,t, σ(s,t|v)=0.

Figure 5 shows the Betweenness Centrality of the users who

tweeted with the hashtag #OntarioTech.

Figure 6. Betweenness Centrality calculation for the users who

tweeted with the hashtag #OntarioTech. This shows

@OntarioTech_U as the most in between user.

5.5. Closeness Centrality

Closeness centrality of a node u is the reciprocal of the average

shortest path distance to u over all n-1 reachable nodes.

𝐶(𝑢) =
𝑛 − 1

∑ 𝑑(𝑣, 𝑢)𝑛−1
𝑣=1

where d(v, u) is the shortest-path distance between v and u, and

n is the number of nodes that can reach u. Notice that the closeness

distance function computes the incoming distance to u for directed

graphs. Figure 7 shows the closeness centrality for the in degree of

the graph of users who tweeted with the hashtag #OntarioTech

Figure 7. Closeness Centrality for the in degree of the graph of

users who tweeted with the hashtag #OntarioTech

5.5.2 Closeness Centrality (Wasserman and Faust)

Wasserman and Faust [21] propose an improved formula for

graphs with more than one connected component. The result is “a

ratio of the fraction of actors in the group who are reachable, to the

average distance” from the reachable actors. Nodes from small

components receive a smaller closeness value. Letting N denote the

number of nodes in the graph,

𝐶𝑊𝐹(𝑢) =
𝑛 − 1

𝑁 − 1

𝑛 − 1

∑ 𝑑(𝑣, 𝑢)𝑛−1
𝑣=1

Figure 8 shows the results of this Wasserman-Faust closeness

centrality measure.

Figure 8. Closeness Centrality based on the Wasserman-Faust

algorithm for the in degree of the graph of users who tweeted

with the hashtag #OntarioTech

Network Analysis, April, 2019, Oshawa, Ontario, Canada S. Nadeem

5.6. Community Detection

For community detection we use the Louvain Heuristic [20].

The method is a greedy optimization method that attempts to

optimize the "modularity" of a partition of the network. Modularity

is defined as:

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]

𝑖𝑗

𝜕(𝑐𝑖 , 𝑐𝑗)

Where Aij represents the edge weight between nodes i and j; ki

and kj are the sum of the weights of the edges attached to nodes i

and j, respectively; 2m is the sum of all of the edge weights in the

graph; ci and cj are the communities of the nodes; and 𝜕 is a simple

kroneker delta function. Figure 9 shows the result of applying this

community detection algorithm on the undirected graph of the users

who tweeted the hashtag #OntarioTech.

Figure 9. Community Detection algorithm, based on

modularity optimization on the users who tweeted the hashtag

#OntarioTech

5.7. Location Data

For all the users we ran a check on their geographical

coordinates. Twitter allows users to enter an address text string for

location. This requires an additional cleaning step to get

geographical coordinates from the address text. We are using the

open source Nominatim framework to convert readable address text

to location coordinates. Figure 10 shows the location data which

was fetched for the users who tweeted with the hashtag

#OntarioTech.

Figure 10. Location map for the users who tweeted with the

hashtag #OntarioTech

5.8. Degree Distribution Plots

For each hashtag analysis we also plot degree distribution plots

for the users’ network behind it. We plot the frequency of degree,

cumulative frequency and complementary cumulative frequency

distribution for both in-degrees and out-degrees of the graph.

Figure 11 shows the plots for the users’ network of people who

tweeted with the hashtag #OntarioTech.

Figure 11. Plots of Frequency, CFD and CCDF against

degrees for in-degrees and out-degrees of the network of users

who tweeted with hashtag #OntarioTech

For the case of #OntarioTech, our degree distribution doesn’t

follow the power law distribution. This is probably because this is

the new name of the University and is primarily being promoted by

a small connected group of people, which deviates from a real

world model.

Network Analysis, April, 2019, Oshawa, Ontario, Canada S. Nadeem

6. FUTURE WORK

There are many directions which we can take to extend this

work. The framework can be made into a proper Python library,

making it even more accessible and usable for network analysis

work. More features can be added such as showing simulations of

the flow of information or hashtags over a network overtime like

an infection network. This can be achieved using all the existing

data collected using the code base and plugging that data in a

JavaScript library for graphs and simulations.

We can also try answering questions such as: How are people

connected on Twitter? Do people with more followers influence

more people? How does information flow through retweets? What

is a typical topology of a network on Twitter? How different

hashtags correlated with one another? And so on. We can answer

many such questions once we have access to sufficient data and

have constructed the underlying network of users.

We can also conduct a detailed study of external influence on

various hashtags that trend over the network. In particular, how

different “News Cycle” stories evolve overtime on the social media

platform. Similar to the work on meme tracking done by Leskovec

et al [1].

7. CONCLUSION

In this project we have created a Python framework for

collecting key network data from Twitter and run network analysis

algorithms. The code can query any term, returning all matched

tweets. We collect key data points from the tweets text and meta

data, which we use to construct users network data. With the

network graph we implement various network analysis algorithms

such as degree distribution, closeness and betweenness centrality,

clustering and community detection.

Using this repository of code, users can start performing

detailed analysis on Twitter at a very granular level, analyzing

individual Hashtag propagation on an daily scale, perform network

analysis on the users tweeting those hashtags and map out location

data of the users.

ACKNOWLEDGMENTS

We would like to thank Twitter Inc. for providing an API to

their service. The contributors to Tweepy, the Python wrapper for

the Twitter API. Geopy for providing an API to Nominatim Open

Street Maps. Plotly and NetworkX Python library contributors for

providing comprehensive charts and plotting and detailed network

creation and analysis tools. Finally, AmirAli Salehi-Abari for his

guidance and knowledge.

REFERENCES
[1] J. Leskovec, L. Backstrom, J. Kleinberg (2009). Meme-tracking and the

Dynamics of the News Cycle. ACM.

[2] Haewoon Kwak, Changhyun Lee, Hosung Park, Sue Moon (2010). What is

Twitter, a social network or a news media? WWW '10 Proceedings of the 19th

international conference on World wide web Pages 591-600

[3] Akshay Java, Xiaodan Song, Tim Finin, Belle Tseng (2007). Why we twitter:

understanding microblogging usage and communities. Proceedings of the 9th

WebKDD.

[4] Alec Go, Richa Bhayani, Lei Huang (2009). Twitter sentiment classification

using distant supervision. Processing. 150.

[5] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, Krishna P. Gummadi

(2010). Measuring User Influence in Twitter: The Million Follower Fallacy.

AAAI Publications.

[6] Carlos Castillo, Marcelo Mendoza, Barbara Poblete (2011). Information

Credibility on Twitter. Fourth International AAAI Conference.

[7] Takeshi Sakaki, Makoto Okazaki, Yutaka Matsuo (2010). Earthquake Shakes

Twitter Users: Real-time Event Detection by Social Sensors. WWW '10

Proceedings of the 19th international conference on World wide web Pages 851-

860

[8] Twitter API documentation:

https://developer.twitter.com/en/docs.html

[9] Twitter API wrappers and libraries:

 https://developer.twitter.com/en/docs/developer-utilities/twitter-libraries.html

[10] Personal repository code for the project:

https://github.com/saliknadeem/Twitter-Network-Analysis

[11] Twitter API playment plans:

https://developer.twitter.com/en/pricing.html

[12] Geopy library:

https://geopy.readthedocs.io/en/stable/

[13] Nominatim Open Streep Map Framework:

 https://nominatim.openstreetmap.org/

[14] Python programming language:

https://www.python.org/

[15] Anaconda Package Manager for Python:

 https://www.anaconda.com/

[16] Github - The world's leading software development platform:

 https://github.com/

[17] Tweepy – Python Wrapper for Twitter API:

http://www.tweepy.org/

[18] NetworkX - Python package for the creation, manipulation, and study of the

structure, dynamics, and functions of complex networks:

 https://networkx.github.io/

[19] Plotly - develops online data analytics and visualization tools:

https://plot.ly/

[20] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre

(2008). Fast unfolding of communities in large networks. IOP Publishing Ltd

[21] pg. 201 of Wasserman, S. and Faust, K., Social Network Analysis: Methods and

Applications, 1994, Cambridge University Press.

https://developer.twitter.com/en/docs.html
https://developer.twitter.com/en/docs/developer-utilities/twitter-libraries.html
https://github.com/saliknadeem/Twitter-Network-Analysis
https://developer.twitter.com/en/pricing.html
https://geopy.readthedocs.io/en/stable/
https://nominatim.openstreetmap.org/
https://www.python.org/
https://www.anaconda.com/
https://github.com/
http://www.tweepy.org/
https://networkx.github.io/
https://plot.ly/

