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Abstract—In this project I have implemented a Deep Genetic
Algorithm (GA) to train the neural network of a reinforcement
learning agent. The algorithm shows promising results for DL
Agent training as it converges to optimum performance in very
few generations. Traditionally, Neural Networks are trained
using a gradient based back propagation step. This approach
evolves the weights of the network using a simple, gradient-
free, population based GA. The experiments were performed
on relatively simple examples which takes just a few minutes to
train but the underlying algorithm is capable of running on Deep
Convolutional Networks with millions of parameters as well.

Index Terms—Genetic Algorithms, Reinforcement Learning,
Deep Learning, Neural Networks

I. INTRODUCTION

Reinforcement learning (RL) is a class of Machine Learning
algorithms (Figure.1) which is different from supervised and
unsupervised learning. In supervised learning, we have a set of
richly labelled data, where for each training example, a correct
prediction or label is already defined. These labelled examples
are used as a metric for directly evaluating supervised learning
algorithms. Unsupervised learning is about finding patterns
and structures in data. It requires no labels.

Reinforcement learning on the other hand, works on a single
scalar value which generally quantifies how good an agent’s
most recent action is in an environment. It is the sum of
rewards from all actions taken by the agent over time in that
environment. This number determines how adept the agent
is in that environment. It is generally very hard to directly
correlate this scalar reward value with a specific sequence of
actions which will culminate in that reward value.

II. BACKGROUND
A. Reinforcement Learning

Reinforcement Learning is a very broad area in Machine
Learning. Like with supervised learning, RL has also seen
massive growth and popularity when paired with Deep Learn-
ing models. The representational power of Deep Neural Net-
works has made it possible to train very complex RL agents
which can learn from just pixel values and achieve remarkable
results.

RL algorithms can be broadly categorized in two major cat-
egories, model-based and model-free. Regardless of the type
all RL environments must be modelled as a Markov Decision
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Process (MDP) (Figure.2 ). This MDP formalizes how an
agent interacts with an environment. Every RL algorithm also
has some core elements such as Policy, Reward Signal and
a Value function. Lastly there is a fourth optional element
which is the Environment Model, which depends on weather
the problem is model-based or model-free.

o A Policy refers to the part of an agent directly responsible
for deciding on the action to take. It can be an approx-
imator that is learned (i.e using a neural network), or a
program that is made to follow a set of rules or heuristics
based on the state of the environment.

e A Reward Signal is a scalar value the agent receives
every time step after taking an action. It is a function of
both the current state, as well as the selected action, and
it quantifies how good the agent’s last action was.

e A Value Function is used to evaluate the long-term
behaviour of an agent in an environment. Given a policy
and a starting state for an environment, the value function
can be used to predict the long-term total reward of the
given policy in that environment.

o An Environment Model is only used by some classes



of RL algorithms. It is a component that can simulate
or approximate the environment an agent is acting in.
If an agent has an existing environment model it can
make use of, the model can be leveraged to predict
an environment’s subsequent state, and a reward value,
given the current state, and an action. This is powerful
because this environment model can be used by the
agent for planning before it takes an action in the actual
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Fig. 2. A Markov Decision Process. Formal representation of how an agent
interacts with the environment.

B. Deep Reinforcement Learning

Deep Reinforcement Learning (Deep RL) [1] is a recent area
which leverages the principles and tools of Deep Learning and
applies them on challenging problems in RL [2]-[4]. Deep RL
has been able to tackle problems with a wide range of complex
decision making tasks that were previously not solvable for a
machine. This combination of RL with Deep Learning, is most
useful in problems with high dimensional state-space. Previous
RL approaches had a difficult design issue in the choice of
features [5], [6]. Deep RL is able to learn problems through
pixel values using Convolutional Neural Networks which has
lead to smart Al systems capable of playing games at beyond
human level expertise [7]. Deep RL has seen tremendous
success in the last few years with case studies such as the
first AI GO player beating the human world champion [8].
Deep RL was also applied to play popular competitive e-Sports
games such as Dota 2 [9] and Starcraft 2 [10].

C. Genetic Algorithms

Genetic Algorithms (GA) belong to a category of the Meta-
heuristic search family of algorithms. GA was invented by
John Holland and developed this idea in his book “Adaptation
in natural and artificial systems” in the year 1975 [11]. Holland
proposed GA as a heuristic method based on “Survival of
the fittest”. GA was discovered as a useful tool for search
and optimization problems [12]. GAs use principles of natural
selection to search for optimal solutions in a search space.
They have shown to be very efficient even when the search
space is very large, complex or even high dimensional. There
is a population of individuals, only the best candidates are
chosen to reproduce using some genetic operations and the
poor solutions are discarded.

III. RELATED WORK

The field of Deep RL is a relatively new one. It is less than
a decade old. There are three broad families of algorithms
which have shown promise on RL problems:

o Q-learning methods
o Policy gradient methods
« Evolution Strategies (ES)

Q-Learning methods try to approximate the optimal Q
function value with DNNs, generating policies that for a given
state chose an action which tries to maximize the Q value.
DQN is an example of this approach [7]. Policy gradient
methods directly encode the action probability response to a
given state input through DNN representation. Asynchronous
Advantage Actor-Critic (A3C) framework [13], trust region
policy optimization (TRPO) [14], Proximal Policy Optimiza-
tion Algorithms [15] and deep deterministic policy gradient
(DDPQG) [16] are all examples of policy gradient based algo-
rithms. Evolutionary strategies try to optimize the parameters
of a DNN in order to maximize the output cumulative reward.
Salimans et al [17] developed ES-based algorithms using mas-
sive parallelization to make them scalable and competitive to
Q-learning and Policy Gradient based approaches. ES provide
a competitive alternative to traditional RL algorithms and only
require a fraction of the time to train.

All of these approaches above have an element of gradient
calculation or approximation which makes them computation-
ally expensive. Q-Learning approaches calculate the gradient
loss of the Q-function via back-propagation calculation on the
DNN. Policy gradient based approaches samples behaviours
stochastic-ally from the current policy and then calculate gra-
dients to improve the performance. ES uses an approximation
similar to finite difference to optimize the algorithm which is
an approximate to gradient calculation.

The method proposed in this paper is independent of any
gradient calculations. Only Gaussian perturbations are applied
to the parameters space to optimize the results. This drastically
decreases the computational complexity of the algorithm and
achieves good results in very short times.

IV. METHODOLOGY

For this project I have implemented a Genetic Algorithm
based approach to train the parameters of Deep RL models.
The GA implementation can be used to update the parameters
of a simple feed forward Neural Network without the need
for the back propagation algorithm, meaning it is gradient
free. The Network layers can be Convolutional or Fully
Connected layers. The model is built for RL agents based
on the Open AI Gym environments in Python programming
language. Open Al Gym was chosen for its relatively straight
forward configuration, support for python language and its
stable and diverse set of environments to test various RL and
Deep RL approaches.

A. A Simple Genetic Algorithm

For the core optimization algorithm, I have used the simple
Genetic Algorithm as described by Such et al. [18]. The GA



has a population of N individuals. Each individual chromo-
some is a set of all the parameters of a DNN, also called the
parameters vector . At every generation, each 6; is evaluated
by running the environment with that NN, which produces a
reward or a fitness score F'(6;). This is our fitness function.
Because of the stochastic nature of the RL environment we
run this experiment x number of times (for my experiments
I used x = 3 ) and the average score is taken for these runs
to get the fitness value of that parameter vector 6;. Once we
have the fitness of all the individuals we apply a truncation
selection where we only select the top 7" individuals. We then
only used these T individuals to produce the next generation
of children. For the reproduction process only the following
mutation operation is used: A parent is selected from the set T’
of top individuals with replacement and is mutated by applying
an addative Gaussian noise to the parameter vector such that
0’ = 6+ o€ where € ~ N(0, I). This process is repeated N —1
times. The lat N*h individual is the individual with the best
fitness function which is used from the previous generation.
This technique is called elitism. In order to ensure reliable
optimization, the top T individuals are evaluated an additional
x = 3 number of times. The one with the highest score is
called the elite individual in that generation.

Algorithm 1 Simple Genetic Algorithm

Input: mutation function ), population size N, number
of selected individuals T', policy initialization routine ¢,
fitness function F'.
for g = 1,2..., G generations do

fori = 1....,N — 1 in next generation’s population

do
if g = 1 then
Pf=1 = ¢(N(0,1)) {initialize random DNN}
else

k = uniformRandom(1,T') {select parent}
P = 1p(P?") {mutate parent}
end if
Evaluate F; = F(Py)
end for
Sort P¢ with descending order by F;
if g = 1 then
Set Elite Candidates C' + PY=1
else
Set Elite Candidates C' < P{ U {Elite}
end if
Set Elite < arg max,c¢ 5 E?il F(#)
P9 + [Elite, P9 — {Elite}] {only include elite once}
end for
Return: Elite

Fig. 3. This is the original author’s algorithm for the simple GA used in my
project.

B. Deep Neural Network Representation

The key architecture used in the learning process is a simple
fully connected feed forward neural network. For the experi-
ments performed mostly, just a single hidden layer was enough
to achieve good results. The number of neurons in the hidden
layer were adjusted based on empirical results. The inputs to
the DNN are the observation variables of an environment at
a given state. The DNN outputs the appropriate action for the
agent in order to maximize the overall cumulative reward. We
only use the weights and bias parameters of the neural network
in our GA. No back probagation step is needed to train the
model. The parameters are updated by the GA.

C. Environment

The environment used for all the experiments conducted is
Open Al Gym [19]. It is a very comprehensive toolkit for RL
research. It includes many diverse set of benchmark problems
and tasks built using a standard interface. Specifically three
environments from Gym were used in the following experi-
ments namely Cart Pole, Mountain Car and Pendulum.

V. EXPERIMENT

All the experiments were performed on a laptop using
Jupyter Notebook through WSL Linux subsystem. GPU com-
puting was not used, still the generations only took several
minutes to compute on the CPU. The dependencies for the
project include the following libraries: numpy, pytorch and
gym. All of these can be installed using pip or anaconda.
Details on each individual environment used are provided
below.

A. Cart Pole

Fig. 4. Cart Pole vO

a) The Problem: A pole is attached by an un-actuated
joint to a cart, which moves along a frictionless track. The
system is controlled by applying a force of +1 or -1 to the cart.
The pendulum starts upright, and the goal is to prevent it from
falling over. A reward of +1 is provided for every timestep that
the pole remains upright. The episode ends when the pole is



more than 15 degrees from vertical, or the cart moves more
than 2.4 units from the center.

b) The Model: The neural network used is a single
hidden layer, fully connected neural network. The input layer
has 4 parameters and the output layer has 2 parameters;
these correspond to the environment observation and actions
respectively. The hidden layer used consists of 128 neurons.
The total parameters for the network are § = 898, which is
the genotype of the GA.

TABLE I
CART POLE: OBSERVATION (INPUTS OF NEURAL NETWORK)
Num Observation Min Max
0 Cart Position —2.4 2.4
1 Cart Velocity —00 00
2 Pole Angle ~ —41.8° | ~ 41.8°
3 Pole Velocity At Tip —00 00

TABLE 11
CART POLE: ACTIONS (OUTPUT OF NEURAL NETWORK)
Num Action
0 Push cart to the left

1 Push cart to the right

Layer (type) Ooutput shape Param #
Linear-1 [-1, 128] 648
RelU-2 [-1, 128] 2
Linear-3 [-1, 2] 258
Softmax-4 [-1, 2]

Total params: 898
Trainable params: 898
Non-trainable params: @

Input size (MB): ©.00
Forward/backward pass size (MB): ©.00
Params size (MB): ©.00

Estimated Total Size (MB): @.81

Fig. 5. Cart Pole Neural Network Model

B. Mountain Car

a) The Problem: Get an under powered car to the top of
a hill (top = 0.5 position). There are 2 observations of position
and velocity available and there are 3 possible actions no push,
push left and push right. —1 for each time step, until the goal
position of 0.5 is reached. There is no penalty for climbing the
left hill, which upon reached acts as a wall. The environment
starts from a random position —0.6 to —0.4 with no velocity.

b) The Model: The neural network used is a single
hidden layer, fully connected neural network. The input layer
has 2 parameters and the output layer has 3 parameters;
these correspond to the environment observation and actions
respectively. The hidden layer used consists of 256 neurons.
The total parameters for the network are 6§ = 1539, which is
the genotype of the GA.

Fig. 6. Mountain Car v0

TABLE III
MOUNTAIN CAR: OBSERVATION (INPUTS OF NEURAL NETWORK)
Num | Observation Min Max
0 Position —-1.2 0.6
1 Velocity —0.07 | 0.07

C. Pendulum

a) The Problem: Try to keep a friction-less pendulum
standing up. The precise equation for reward: —(theta®+0.1x
thetagt® + 0.001 * action?). Theta is normalized between -pi
and pi. Therefore, the lowest cost is —(pi? + 0.1 8% +0.001 x
22) = —16.2736044, and the highest cost is 0. In essence,
the goal is to remain at zero angle (vertical), with the least
rotational velocity, and the least effort.

b) The Model: The neural network used is a single
hidden layer, fully connected neural network. The input layer
has 3 parameters and the output layer has 1 parameter;
these correspond to the environment observation and actions
respectively. The hidden layer used consists of 256 neurons.
The total parameters for the network are 6 = 1281, which is
the genotype of the GA. The output generates a regression of
values from —2.0 to 2.0

TABLE IV
MOUNTAIN CAR: ACTIONS (OUTPUT OF NEURAL NETWORK)
Num Action
0 Push left
1 no Push
2 Push right
TABLE V
PENDULUM: OBSERVATION (INPUTS OF NEURAL NETWORK)
Num | Observation | Min | Max
0 cos(theta) —1.0 1.0
1 sin(theta) —1.0 1.0
2 theta dot —8.0 8.0




Layer (type) Output Shape Param #
Linear-1 [-1, 256] 768
RelU-2 [-1, 256] 0
Linear-3 [-1, 3] 771
Softmax-4 [-1, 3]

Total params: 1,539

Trainable params: 1,539

HNon-trainable params: @

Input size (MB): ©.60
Forward/backward pass size (MB): 9.00
Params size (MB): ©.81

Estimated Total Size (MB): @.01

Fig. 7. Mountain Car Neural Network Model

Fig. 8. Pendulum v0

VI. RESULTS

All experiments are performed with maximum generations
G = 10. At the end the candidate with the highest fitness
value is used to generate the test render of the experiments.
The final renders of all three experiments are attached with
this report.

A. Cart Pole

Cart Pole experiment can run for infinite time. The experi-
ment works very well with the simple GA-based algorithm
which usually produces good candidates within the first 3
to 5 generations. The trained network can run for long pe-
riods without failing. It achieves perfect result. The model

TABLE VI
PENDULUM: ACTIONS (OUTPUT OF NEURAL NETWORK)
Num Action Min Max
0 Joint effort | —2.0 2.0

Layer (type) Output Shape Param #
Linear-1 [-1, 256] 1,024
RelU-2 [-1, 256] 8
Linear-3 [-1, 1] 257
Threshold-4 [-1, 1]

Total params: 1,281
Trainable params: 1,281
Non-trainable params: @

Input size (MB): @.0@
Forward/backward pass size (MB): ©.0@
Params size (MB): ©.00

Estimated Total Size (MB): @.01

Fig. 9. Pendulum Neural Network Model

was trained on an episode length, £ = 5000 to show the
effectiveness of the trained model. This result runs the Cart
Pole for about 2 minutes without falling. The GA manages to
find multiple solutions to solve this problem.

B. Mountain Car

This was a difficult problem for the type of GA-based
approach implemented. Even though the algorithm managed to
find a solution which can reach the goal in under 200 episodes,
this problem is not well suited for GA. The environment keeps
decreasing the score for each frame the goal is not achieved
and the score is locked when the target is achieved. This kind
of reward function in which there is no direct maximization
or minimization step at each frame is difficult to converge.
Yet the exploratory nature of the mutation function manages
to find a solution which can solve the given problem.

C. Pendulum

This problem also showed good results with the GA. Since
this problem can run infinitely, we can train the network to
try and minimize the loss to the reward function by keeping
the pendulum in the upright position for as long as possible.
The goal is to apply the least amount of action to keep
the pendulum upright and GA shows good results with this
problem.

VII. CONCLUSION

In conclusion, I implemented a very simple Genetic Al-
gorithm on a Deep Reinforcement Learning environment to
produce quality results. 3 environments were used for exper-
imentation and the GA performed very well with two out of
the three problems. For the third one, the GA was still able to
solve it but more work can be done to improve this basic GA
to avoid getting stuck in such local optima states where the
reward function is a bit deceptive. The exploration component
of the mutation function still managed to find a solution to the
problem but more work needs to be done to balance the use
of exploration and exploitation when searching for solutions.



VIII. FUTURE WORK

The GA implemented is very modular and can be applied to
similar problems to gain more insights into the effect of dif-
ferent types of environments and reward functions. The code
can be easily augmented to operate with CNNs which opens
up avenues for further experimentation with more complex
problems and much lager state spaces based on pixel values.
The GA is a very simple baseline version. Experimentation
can be done to optimize this GA further to produce better
results. We can replace the GA with more complex algorithms
such as DE or CMA-ES and perform studies to gauge their
effectiveness in this domain of Deep RL.
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