Deep Concolic: Concolic Testing for Deep
Neural Networks

Davood Zaman Farsall90752180] ' Eojvang Wangl100729909] " and Muhammad Salik
Nadeem[100727304]

Ontario Tech University, Oshawa, Ontario, Canada.

Abstract. Concolic testing is a combination of program execution and
symbolic analysis in order to explore the execution paths of a software
program. In this paper we are using a tool for testing and debugging Deep
Neural Networks(DNNs) and it is based on concolic testing approach.
Besides, we define a coverage criteria for DNNs and then perform concolic
testing to increase test coverage. In the the experimental results we show
the effectiveness of the concolic testing in reaching to a high coverage and
finding adversarial examples.

Keywords: Concolic Testing - Deep Concolic - Software Testing - Deep
Neural Networks - Adversarial Attacks.

1 Introduction

Nowadays, Deep Neural Networks (DNNs) have gained too much attraction for
solving wide range of AI problems. However, the main concern is about the
safety of using DNN in real-world systems, where faulty behaviors will put hu-
man lives in a very dangerous situation and also increase the risk of financial
damage. So, testing is a main step in software industry and it helps to get mean-
ingful information about the quality of the software. So far, researchers have
not concentrated on works for testing DNNs systematically and they were only
focusing on concrete execution or symbolic execution or gradient-based search
individually and non of these approaches use the combination of the other. How-
ever, concolic testing uses the combination of concrete execution and symbolic
analysis for exploring the execution path of the software.

For the final project of this course we decided to implement this paper [4],
because it is possible to test the coverage criteria and also generate adversarial
examples for making DNNs more robust and safe. In addition, we realized that
there is a good potential opportunity to test and debug more models of DNNs
with two dataset MNIST and Fashion-Mnist. By analysing the results of our ex-
periments we found a path to enhance the performance of different Convolutional
Neural Networks (CNNs) models to examine the capacity of deepconcolic as a
white-box tool for DNNs. The rest of this paper is structured as follows: section
2 reviews the background behind this research. In section 3, the deepconcolic
testing is explained in details. Section 4 provide details about the experimental
results and, finally, in section 5 we conclude the contribution.

2 Background

With the rapidly increasing interest in Deep Learning and its implementations
in many safety critical systems it is more important than ever to have tools that
can rigorously test, validate and certify software that implements DNNs [2]. A
feedforward DNN [1] consists of many neurons stacked on top of one another in
many hidden layers in the system. Each neuron has a set of non-linear activation
functions which are triggered based on the input valued it gets. These layers can
be a dense (fully connected) layer, convolutional layer, flatten layer or max-
pooling layer, with activation functions such as Sigmoid, Rectified Linear Unit
(ReLU), Leaky ReLU, Softmax and etc.

As far as safety is concerned, DNNs notably show strong concerns in dealing
with adversarial examples [5], whereby two enough inputs cause contradictory
decision. In addition, a DNN is unsafe if there exist at least one adversarial
example and as DNNs are considered as black boxes, so it id very difficult to
understand their behavior by means of inspection. As an example, a self driving
car that uses DNN as its model, if it recognise a driving sign incorrectly, then
it will put the human lives in serious danger. Therefore, the model should be
robust and accurate even with adversarial example.

3 The DeepConcolic Tool

Concolic testing has been applied a lot in software testing and it starts by using
concrete input for executing the program, at the end of the concrete run, a new
execution path is selected heuristically. This novel execution path is encoded
symbolically and it yields a new concrete input. This process is repeated over and
over until we reach a satisfactory level of structural coverage. The most impactful
part that affects the performance of the concolic testing is the heuristic used to
select the next execution path and more carefully designed heuristics will lead to
achievement of better coverage. The architecture of DeepConcolic is presented in
figure 1. The main work of DeepConcolic is to incrementally generate test suit
to improve coverage by alternating between concrete execution and symbolic
analysis and then return the coverage result. Therefore, it takes a DNN model
and some raw test data as input, the reason for taking raw test data is to help
this tool to find suitable nearby test cases easier. Then we have to define a test
criterion which we use neuron coverage. Next step is preprocessing which formats
the input data and tries to configure the concolic engine and the gradient ascent
search engine (GA). Given an unsatisfied test requirement a, we identify a test
input b based on our current test suit that is close to satisfy a according to the
evaluations based on concrete execution and then we apply symbolic analysis to
get a new test input ¢ that satisfies a and we append ¢ to the test suit. We keep
repeating this process until finding a satisfactory level of coverage. At the last
step, we determine whether the test suit includes adversarial examples (i.e. pairs
of test cases that are close to each other with respect to a given distance measure
but are different based on their classification labels) by passing the generated

Deep Concolic: Concolic Testing for Deep Neural Networks 3

test suit from the previous step to oracle database.

One of the key topics of our work is about the test coverage that we mentioned
before. To be precise, in a software program there is a huge set of concrete
execution paths [3] and, similarly, a DNN has a set of linear behaviours known as
activation pattern which maps the set of hidden neurons to a set of {true,false}.
The value ”true” indicates that the ReLU of a neuron is activated and ”false”
otherwise. In fact, computing a test suit that covers the total activation patterns
of a DNN is very difficult due to the large number of the neurons in DNNs. Thus,
in this paper that we implemented [4], the authors have identified a subset of
the activation patterns based on the coverage criteria, and try to generate test
inputs that cover these activation patterns.

Now by providing a set of requirements on the test suit, we can define test
coverage metric to show the percentage of the test requirements that are satisfied
by the test cases T. Given a network N ;| a set R of test coverage requirements
expressed as DR formulas, and a test suite T, the test coverage metric M(R, T)
is as follows:

{r € RIT| =r}|

M(R,T) = I

(1)

The coverage metric in eq(1) is used as a proxy metric for the confidence in
safety of the DNN under test. In our implementation we focused on the neuron
coverage as the coverage criterion.

DMNMN

raw tast data test criterion

adversarial

examples l l

I Preprocessing
oracle *

A

_—— — A J

concolic —_——— - -
engine linear pixebwise
programmingl I optimisation I GA search

I L —— 1 engine

1

v 7
4| Test suite I

Fig. 1. The DeepConcolic Tool

4 Experimental Results

As the result of our implementation, we used the MNIST and fashion-MNIST
datasets in our work. MNIST dataset contains 60000 images of size 28 x28 pixels
for training and 10000 images for testing and fasion-MNIST has 60000 training
images of size 28x28 pixels and 10000 testing images. Both dataset are divided
into 10 classes of images, MNIST has classes of numbers in range of 0 to 9 and
fashion-MNIST has class labels of {T-shirt/top, Trouser, Pullover, Dress, Coat,
Sandal, Shirt, Sneaker, Bag, Ankle boot}.

First we trained the model based on the original data for both datasets. In
the second experiment we substituted 5000 samples of the original data in each
dataset with adversarial examples and for the third experiment we used 10000
adversarial examples instead of the original data and for the final one we used
half of the original data and half from adversarial data. In addition to that, for
testing the model with the 10000 images that each dataset has, we calculated
the accuracy based on three different cases:

1. Accuracy with 10000 raw data
2. Accuracy with 5000 raw data and 5000 adversarial data
3. Accuracy with 10000 adversarial data

And we also calculated the neuron coverage in each of these experiments. The
detailed result of our experiments is presented in Figure 2 and Figure 3.

Original Adv model (5k) Adv model (10k) Adv model (30k)
model

Train data 60k (20% val) | 60k (Sk adv) 60k (10k adv) 60k (30k adv)

(20%val) (20%val) (20%val)

Accuracy with 99.22 99.17 98.95 98.88

10k raw data

Accuracy with 66.82 70.23 75.53 99.26

5k raw data &

5k adv

Accuracy with 35.413 41.339 53.54 99.98

10k (adv)

NC 0.565 0.653 0.758 0.859

Fig. 2. Results for the MNIST data set

The results show a clear correlation with the robustness of the training pro-
cess when using adversarial examples to train the model. The more adversarial
examples are used in training the more robust the model and the more Neu-
ron Coverage we get as a result. The original MNIST data set was more prone
to adversarial attacks since it is a very simple data set and learn-able features
are limited so the adversalial perturbations result in greater differences in the
classification step. The Fashion-MNIST data set showed a bit more resilience to

Deep Concolic: Concolic Testing for Deep Neural Networks

Original Adv model (5k) Adv model (10k) Adv model (30k)
model

Train data 60k (20% val) | 60k (5k adv) 60k (10k adv) 60k (30k adv)

(20%val) (20%val) (20%val)

Accuracy with 88.950 88.930 88.760 88.330

10k raw data

Accuracy with 72.220 75.310 80.270 94.140

Sk raw data &

5k adv

Accuracy with 55.180 60.960 71.580 99.650

10k (adv)

NC 0.580 0.672 0.762 0.893

Fig. 3. Results for the Fashion-MNIST data set

adversarial attacks as compared to MNIST hand writings. This could be because
while Fashion-MNIST has the same resolution, the data has more features than
the simple hand writing cases and the networks learns those features in more
detail so the minor changes in the adversarial examples were not as effective in
its case.

5 Conclusion

In this paper we implemented DeepConcolic on two dataset MNIST and fashion-
MNIST. We experimented our implementation in various cases based on the raw
data and adversarial examples and realised that training a DNN with adversarial
examples will result in higher accuracy and robustness. However, there were
some challenges that we faced during our implementation such as, the original
experiments were run on a machine with 24 core Intel(R) Xenon(R) CPU E5-
2620 and 2.4GHz and 125GB memory but the hardware that we had was 2 GPU
servers with 4 Titan V100 GPUs having 32GB memory. So, we had to change the
CPU based code to run on the GPU and based on our experiments. Our results
clearly show that training deep learning models with adversarial examples makes
them more robust and secure to adversarial attacks and it also results in greater
coverage in terms of the Neuron Coverage criterion as described in the paper.

References

1. Yoshua Bengio, Ian Goodfellow, and Aaron Courville.
Citeseer, 2017.

2. Xiaowei Huang, Daniel Kroening, Marta Kwiatkowska, Wenjie Ruan, Youcheng Sun,
Emese Thamo, Min Wu, and Xinping Yi. Safety and trustworthiness of deep neural
networks: A survey. arXiv preprint arXiv:1812.08342, 2018.

3. Youcheng Sun, Xiaowei Huang, and Daniel Kroening. Testing deep neural networks.
arXiwv preprint arXiv:1803.04792, 2018.

Deep learning, volume 1.

(@)

b & & & &

= 2% 38 =3 29

oS S S

g
B
d
]
b

Fig. 4. Adversarial examples for the Fashion-MNIST data set

Deep Concolic: Concolic Testing for Deep Neural Networks 7

4. Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. Concolic testing for deep neural networks. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering,
pages 109-119. ACM, 2018.

5. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Tan Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiw:1312.6199, 2013.

